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The influence of various parameters such as the domain size, the exponent of the power law, the smallest
radius, and the fracture shape on the percolation threshold of fracture networks has been numerically studied.
For large domains, the adequate percolation parameter is the dimensionless fracture density normalized by the
product of the third moment of fracture radii distribution and of the shape factor; for networks of regular
polygons, the dimensionless critical density depends only slightly on the parameters of radii distribution and on
the shape of fractures; a model is proposed for the percolation threshold for fractures with elongated shapes. In
small domains, percolation is analyzed in terms of the dimensionless fracture density normalized by the sum of
two reduced moments of the radii distribution; this provides a general description of the network connectivity
properties whatever the dominating percolation mechanism; the fracture shape is taken into account by using
excluded volume in the definition of dimensionless fracture density.
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I. INTRODUCTION

Fractures and fracture networks determine the permeabil-
ity of many natural rocks, and their behavior generated inter-
est in various fields; some aspects of this problem are dis-
cussed in, e.g., Sahimi �1�, Adler and Thovert �2�, and the
National Research Council �3�. Recent advances in modeling
of flow and transport phenomena in fractured rock are re-
viewed by Berkowitz �4�.

Many studies focused on scaling behavior of fracture sys-
tems; several scaling laws have been proposed which relate
various properties of these systems, namely geometrical, hy-
draulic, transport or mechanical on different scales. In many
cases, no characteristic length in the statistical distributions
of geometrical properties of rock fractures can be observed,
and these distributions are shown to follow a power law. This
can result in the dependency of connectivity of fracture sys-
tems on scale �5�. A thorough survey of power law scalings
proposed for natural fracture systems together with their
range of applications is presented by Bonnet et al. �6�.

Moreover, two features render the situation still more
complex. The first one is that the shape of the fractures is
unknown and is likely to vary from element to element. The
second one is that the larger fractures may be larger than the
observation zone.

Percolation of random systems has been the topic of many
studies in the past �7�. The percolation threshold is a property
which depends on the details of the random system; in this
sense, it is not universal in contrast with critical exponents
which depend mostly on the space dimension. However, the
percolation threshold is crucial for the transport properties.

For instance, below the percolation threshold the permeabil-
ity of a fracture network is equal to zero. For this reason, a
lot of attention has been devoted in the past to percolation
properties of fracture networks. Percolation in two-
dimensional �2D� systems of line segments with lengths uni-
formly distributed in a finite interval was analyzed by Rob-
inson �8,9�; it was shown numerically that the critical line
density is proportional to the second moment of the line size
distribution. Three-dimensional �3D� systems of discs were
considered by Charlaix et al. �10�, who proposed an invariant
percolation parameter for polydisperse networks defined as
the product of the fracture network density and of the third
moment of fracture size distribution.

Huseby et al. �11� used the concept of excluded volume to
obtain percolation thresholds independent of the fracture
shape for monodisperse networks. Because of its importance,
this study will be detailed in Sec. II A. de Dreuzy et al. �12�
considered the connectivity of three-dimensional systems of
ellipses of various aspect ratios. They found that a scale in-
variant percolation parameter is the union of the mutual ex-
cluded volumes of all ellipses in the system per unit volume
which is proportional to the third moment of the length dis-
tribution. Fluctuations of this percolation parameter at the
threshold with the power law exponent and the eccentricity
have been shown numerically to remain limited within a
range of less than one order of magnitude.

Rossen et al. �13� considered the dependence of the con-
nectivity of power law fracture systems on the observation
volume size.

Percolation in fractured networks with a broad distribu-
tion of sizes is a part of a more general multimodal con-
tinuum percolation problem. Lorenz et al. �14� analyzed the
percolation properties of systems of discs in 2D or spheres in
3D with single or uniformly distributed radii. They demon-
strated that the percolation threshold, in terms of the volume
fraction of the randomly placed objects, is larger in the case
of multimodal radii distribution than for the model with
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equally sized disks or spheres. The problem of the depen-
dence of continuum percolation thresholds on polydispersity
has also been addressed by Berkowitz �15�, Dhar �16�,
Mecke and Seyfried �17�, and Consiglio et al. �18�.

This paper is an extension of the studies of Huseby et al.
�11� to networks of polydisperse fractures distributed accord-
ing to a power law. Moreover, the size of the system is not
necessarily large when compared to the largest fractures.
This paper complements our recent presentation �19� which
addressed the permeability of such systems. The present con-
tribution is organized as follows. In Sec. II, the geometrical
model of polydisperse fractures is described, the numerical
approach is briefly discussed. The percolation behavior of
monodisperse networks is recalled; various dimensionless
fracture network density definitions are given for polydis-
perse systems; two forms of percolation probability functions
based on the error function and on the exponential depen-
dence are presented. Numerical results for large domains
whose size exceeds the maximum fracture diameter, are
given in Sec. III. The influence of the parameters of the radii
distribution and fracture shapes on the percolation threshold
as well as the finite size effects are discussed. In Sec. IV,
percolation properties of small parts of fracture networks are
considered, when the domain size is smaller than the maxi-
mum fracture diameter; an adequate choice of the dimen-
sionless fracture density in this case is discussed; various
percolation mechanisms are analyzed depending on the sys-
tem size and on the parameters of fracture radii distribution.
The variations of the percolation threshold with the scale as
well as the transition between small samples and large do-
mains are considered in Sec. V. Some concluding remarks in
Sec. VI complete this paper.

II. GENERAL

We consider three-dimensional networks made up of frac-
tures with plane polygonal shapes. These polygons may be
regular or not, but all their vertices are supposed to lie on
their circumscribed circle, whose radius R provides a mea-
sure of their size. In agreement with many observations of
fractured rocks �2�, the statistical distribution of the fracture
sizes is supposed to be described by a power law

n�R� = �R−a, �1�

where n�R�dR is the probability of fracture radii in the range
�R ,R+dR�; � is a normalization coefficient, and the expo-
nent a ranges between 1 and 5. In practice, R may vary over
a large interval which can span five orders of magnitude,
from the size Rm of the microcracks to the size RM of the
largest fractures in the system. The normalization condition
implies that � verifies

� =
a − 1

Rm
1−a − RM

1−a �a � 1� , �2a�

� =
1

ln RM − ln Rm
�a = 1� . �2b�

According to a recent synthesis on the real distribution of
fracture trace lengths in a plane intersecting a three-

dimensional fracture network, the corresponding exponent
a2D varies between 0.8 and 3.5 with a maximum occurrence
around 2.0 �6�. Piggott �20� argued via an analytical devel-
opment that the exponents a2D and a are related by a=a2D
+1; a similar observation in numerical simulations has been
presented by Berkowitz and Adler �21�. Thus, it is reasonable
to assume that a varies between 1.8 and 4.5 with a maximum
likelihood around 3.0.

The percolation properties of such networks are investi-
gated in a finite cubic domain � of size L3. Hence, two main
cases can be distinguished, when RM is significantly smaller
or larger than the domain size L; in addition, a transition
regime takes place when RM and L are of comparable orders
of magnitude. In all cases, it is supposed that Rm is much
smaller than L.

The first task to be performed, and may be conceptually
the essential one, is the derivation of an adequate definition
of the network density.

A. Monodisperse networks

Let us briefly recall at this stage the approach and the
main results of a previous investigation of the percolation
properties of fracture networks �11�. It was conducted by
using the same procedures and numerical tools as in the
present case, for networks made up of randomly oriented
plane polygonal fractures with identical sizes. Various frac-
ture shapes were considered, namely �-sided regular poly-
gons ��=3 to 20� and rectangles with an aspect ratio equal to
2.

For monodisperse fracture sizes, the volumetric number
density � is obviously a convenient characterization of the
network density. In order to obtain intrinsic results, i.e., in-
variant within a change of scale, the cubed fracture radius R3

can be used as the unit volume, so that � is the number of
fractures per volume R3. For any given fracture shape, a
critical density �c, corresponding to the onset of percolation,
can be determined in these terms. However, the critical den-
sities for different shapes greatly differ, e.g., �c�1.9 for 20-
gones and �c�5.4 for triangles. This is mostly due to the
arbitrary character of the parameter R which is used to quan-
tify the fracture size, and of the unit volume R3 upon which
the definition of the network density is based.

It should also be noted that two definitions of the network
density appear possible. One is volumetric, quantified by the
average number of fractures in a reference volume; the other
is topological, defined as the average number of connections
per fracture with other fractures in the network, i.e., a mean
coordination number. These two quantities are proportional
one to another for a given fracture shape, but their ratio
strongly depends on the shape if the reference volume is not
properly defined.

However, the two definitions are nicely reconciled by the
concept of excluded volume, which was introduced in the
context of continuum percolation by Balberg et al. �22�; note
that this concept has been used for a longer time in other
fields �see Refs. �23,24��.

For a pair of objects F1 and F2, with given shapes and
orientations, the excluded volume Vex is the volume in which
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the center of F2 must be relative to the center of F1 in order
for F1 and F2 to intersect. For instance, F1 and F2 are spheres
with radii R1 and R2, the excluded volume is a sphere with
radius R1+R2. It can be shown �see Ref. �2�� that if the
objects are two-dimensional, with areas Ai, perimeters Pi �i
=1,2�, random orientations and convex contours, their ex-
cluded volume is

Vex,12 = 1
4 �A1P2 + A2P1� . �3�

This is a particular case of the kinematic formula for convex
bodies �25,26�. If all the polygons are identical, �3� reduces
to

Vex = 1
2AP . �4�

An anisotropic orientation distribution can easily be ac-
counted for in the evaluation of the excluded volume, as
shown by Ref. �2�.

We may use Vex to define the dimensionless fracture den-
sity ��,

�� = � Vex. �5�

It can be interpreted as a volumetric density, since it is the
number of fractures per volume Vex; however, it also repre-
sents the mean number of intersections per fracture with
other fractures in the network, and as such, it is a direct
measure of the connectivity. Therefore, the definition �5� in-
corporates both the volumetric and topologic aspects men-
tioned above.

This definition proved very successful in unifying the
critical densities of networks of fractures with different
shapes. For regular polygons with 3 to 20 vertices, as well as
for rectangles with aspect ratio two, Huseby et al. �11� ob-
tained a nearly constant percolation threshold

�c� = 2.26 ± 0.04. �6�

It was also shown that many other geometrical features, such
as the volumetric density of blocks or the cyclomatic number
only depend on the density ��. Furthermore, Koudina et al.
�27� showed that the permeability of networks made up of
fractures with various shapes, including the previous ones
and polygons with 4 to 20 vertices randomly distributed on a
circle, can also be expressed as a function of �� only.

Hence, it appears that the percolation threshold of mono-
disperse fracture networks, as well as many other properties,
only depend on ��, that is on the mean number of connec-
tions per fracture.

B. Polydisperse networks

Aside from the fracture shape, and from their orientation
which is taken here randomly and isotropically distributed,
the contents of the fracture networks can be characterized by
the three parameters Rm, RM and a associated with the size
distribution �see Eqs. �1� and �2�� and some measure of the
network density.

Obviously, the global volumetric number density of frac-
tures � is inappropriate, since it makes no distinction be-
tween the smallest and the largest fractures in the system. In

addition, it seems desirable to design a measure of the den-
sity that can be varied independently of the three other pa-
rameters Rm, RM, and a, so that we may for instance inves-
tigate the influence of the lower cutoff Rm without changing
any other parameter.

To this end, we introduce the volumetric number density
of fracture per fracture size F�R�,

F�R� = �n�R� , �7�

where F�R�dR is the number of fractures with radius in the
range �R ,R+dR� per unit volume.

The volumetric moments Mp of the fracture radii are de-
fined as

Mp = �
Rm

RM

RpF�R�dR . �8�

They can be expressed as

Mp = ��
RM

p+1−a − Rm
p+1−a

p + 1 − a
�a � p + 1� , �9a�

Mp = ���ln RM − ln Rm� �a = p + 1� . �9b�

Hence, the moments of the radii �Rp�=Mp /M0 are given by

�Rp� =
1 − a

p + 1 − a

RM
p+1−a − Rm

p+1−a

RM
1−a − Rm

1−a �a � 1,p + 1� . �10�

The value of �Rp� for a=1 or p+1 can be obtained by com-
bining �9a� and �9b�.

For monodisperse fracture networks, the dimensionless
density �� �5� was shown to characterize well the connectiv-
ity of systems of fractures with various polygon shapes, and
to provide a unique value for the percolation threshold. For
the networks under consideration here which are made up of
fractures with identical shapes but different sizes, it is con-
venient to express the excluded volume Vex in Eq. �3� as the
product

Vex = vex
R1R2

2 + R1
2R2

2
, �11�

where vex is a dimensionless shape factor, equal for instance
to �2 for disks, 9	3/2 for hexagons, and 4	2 for squares. It
is the introduction of this shape factor in the density �� that
allowed to unify the description of the percolation and trans-
port properties of monodisperse networks of fractures with
various shapes. Therefore, this feature is kept in the defini-
tions of the three dimensionless densities that are used in the
following:

�0� = �vexRM
3 , �12a�

�21� = �vex�R2��R� , �12b�

�3� = �vex�R3� , �12c�

where the brackets � � denote the statistical moments of R
weighted by n�R�. The subscripts are reminders of the statis-
tical moments involved in each definition. The first one, �0�,

PERCOLATION OF THREE-DIMENSIONAL FRACTURE… PHYSICAL REVIEW E 72, 036103 �2005�

036103-3



is the simplest definition, based on the single length scale
RM, but it cannot be expected to capture the scaling character
of the network. The second one is the generalization of �� for
monodisperse networks, since it can be shown that it still is
equal to the mean number of intersections per fracture �2�. It
is therefore a candidate to be considered, but it turns out that
this measure of the local connectivity does not control the
global network percolation and that the last one �3� is much
more successful in this respect.

The generation and analysis of the percolation properties
of fracture networks are similar to those presented by
Huseby et al. �11�. The fractures are embedded in the cubic
domain � of size L; Nfr=�L3 is the number of fractures in �.
Fracture centers are uniformly distributed in space, and their
normal vectors are uniformly distributed on the unit sphere.

Two types of fracture systems were used in the calcula-
tions depending on the boundary conditions. First, nonperi-
odic networks were tested and the percolation cluster must
touch opposite faces of the domain along, say, the x direc-
tion. In this case, fracture centers were generated within � as
well as outside it provided that the incoming fractures inter-
sect at least one of the six faces of the domain. An example
is shown in Fig. 1. Second, when RM �L /2, spatially peri-
odic networks were generated; all fracture centers lie in the
interior of �, which is the unit cell of a spatially periodic
network; in addition the percolation cluster must contain two
homologous fractures, i.e., two fractures with the same coor-
dinates, modulo the period L along the x direction.

Three length scales define two dimensionless ratios,

Rm� =
Rm

RM
, L� =

L

RM
�13�

which together with the exponent a determine the connectiv-
ity and percolation properties of the fracture networks. In

order to eliminate the influence of the lower cutoff Rm, the
first ratio in �13� is kept as small as possible, while the sec-
ond one is systematically varied.

For given values of ��, L�, Rm� , and a, where �� denotes
any one of the dimensionless densities defined in �12� or
simply �, the probability ��L� ,��� of having a percolating
cluster which spans the domain along the x direction, is de-
rived from Nr realizations of the system; then, the value
�c��L�� for which �=0.5 is estimated. In all the tests, the
value Nr=500 is used. � and �c� depend on five or four
parameters as summarized by the formulas

��Rm� ,L�,a,S,���, �c��Rm� ,L�,a,S� , �14�

where S denotes the fracture shape. For brevity, they will be
often written as

��L��, �c��L�� . �15�

A particular choice of the density �� among �12�, � or any
other measure is not important for the estimation of the per-
colation threshold, because for fixed values of Rm� and a, they
differ one from another by constant factors only.

In the limit of large L�, the fracture networks are expected
to follow the standard percolation theory with the percolation
threshold �c��	� �7�,

�c��L�� − �c��	� 
 L�−1/�, �16�

where � is the critical exponent. In our estimations of �c��L��,
the data for ��L� ,��� were fitted by a two-parameter error
function of the form �cf. Fig. 2�a��

��L�,��� =
1

	2�
�

−	

�� 1

�L
exp
−

�� − �c��L���2

2��L�2 �d� , �17�

where �L is the width of the transition region of ��L� ,���
which follows a scaling relation in the limit of large L�:

�L 
 L�−1/�. �18�

When L� increases, �L tends to zero. Therefore, in infinite
systems, � switches abruptly from zero to one when � ex-
ceeds some critical density, and percolation is a critical phe-
nomenon.

For small L�, when a single fracture is able to span the
whole domain, the percolation probability � can never to-
tally vanish, no matter how small the density �. Therefore,
the notions of critical density and of percolation phase tran-
sition are not applicable. Still, it might be of practical interest
to investigate the probability of a finite system to contain a
spanning cluster. Hence, we also consider the density �c� for
which � is equal to 1/2, and by lack of a better word, we
still call it the percolation threshold for a system with given
characteristics and size. However, it is understood that it is
only a transition between � smaller or larger than 1/2.

In general, the percolation probability ��L� ,��� in small
domains does not follow the error function �17�. Numerical
simulations showed that, at least for a�3, it can be fitted
instead by the one-parameter exponential function �cf. Fig.
2�b��

FIG. 1. Example of polydisperse network of hexagonal frac-
tures, with L�=4, a=1.5, Rm� =0.1, which contains Nfr=300 frac-
tures ��21� =26.5, �0�=1.25, �3�=2.44�. The unit for the coordinates is
RM.
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��L�,��� = 1 − exp
−
�� ln 2

�c��L��
� . �19�

This was used, whenever possible, to determine �c� from the
numerical data.

When the percolation probability follows neither the
Gaussian law �17� nor the Poisson law �19�, which occurs
when L� is of the order of unity, or when L��1 and 3a
4 �see �34��, the value of �c� can be evaluated directly from
a linear interpolation of numerically calculated ��L� ,���
near �=0.5. This approach was found to be stable enough
and it has been applied when both �17� and �19� failed.

III. LARGE DOMAINS

In order to analyze the percolation properties of fracture
networks in the case of large domains �L��1�, the influence
of Rm� and a is first analyzed for hexagonal fractures with
fixed L�. Then, the finite size effects are discussed for net-
works of fractures of various shapes when Rm� =1 or 0.1.

A. Influence of Rm� for hexagons

Let us start with Rm� whose influence on the percolation
threshold is displayed in Fig. 3. Three different definitions of
the critical fracture network density are considered, namely
the thresholds �3c� �L��, �21c� �L��, and �0c� �L�� associated with
the three dimensionless densities of Eq. �12�. They give rise
to very different trends. The most natural extension of �c�,
namely �21c� , turns out to be an increasing function of Rm� ,
while �0c� is decreasing. However, �3c� does not vary much as
it is seen in Fig. 3�c�; when Rm� decreases from 1 down to 0.5,
�3c� decreases from 3 down to 2.9; when Rm� decreases further
to 10−2, �3c� increases slightly to reach a constant value which
is almost independent of a.

Let us concentrate on �3c� since it has the crucial advan-
tage to be almost independent on a and Rm� , and consider in
more details the results in Fig. 3�c� �see also Table I�. For the
time being, we shall only consider the data for L�=4. It is
interesting to note that the spatially periodic or aperiodic
character of the networks has only a very small influence on
�3c� . In this figure, the influence of a appears to be very weak
with the exception maybe of a=2.9 when Rm� →0. It should
be said that in this limit �3c� has not yet reached an asymp-
totical value when Rm� has decreased to 0.03; this is probably
because the influence of the smallest fractures is slower to
vanish, since their proportion is very large for a=2.9.

B. Influence of a for hexagons

The variations of �3c� �L�� with a are shown in Fig. 3�d�.
The percolation threshold is fairly constant in the range 1.5
�a�4; it starts decreasing slightly for a�4. This can be
attributed, perhaps, to the finite size effect, which decreases
for large a due to the decrease of the mean fracture size and
the resulting increase of the effective domain size.

Periodic networks consistently yield lower thresholds than
nonperiodic networks, but only by a small amount of the
order of 0.03.

As a whole, all the data in Figs. 3�c� and 3�d� for L�=4
fall in a fairly narrow range,

�3c� �L� = 4� = 2.95 ± 0.12. �20�

FIG. 2. Percolation probability � versus fracture number den-
sity for networks of regular hexagons. Data are for a=1.5, L�=4,
and Rm� =0.01 �a�, a=1.5, L�=0.1, Rm� =0.003125 �b�, and a=3.5,
L�=0.1, Rm� =0.003125 �c�. ��� correspond to the numerical data,
�—� to a fit by an error function, Eq. �17�, �---� to a fit by an
exponential function, Eq. �19�. Vertical lines show estimated perco-
lation thresholds �c�L� corresponding to these two fits.
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These data were obtained for various values of the lower
cutoff �10−2Rm� 1�, and of the exponent �1.5a3�. Pe-
riodic and nonperiodic boundary conditions were also used.

C. Discussion for hexagons

The fact that the percolation threshold presented in terms
of �3� does not vary with Rm� for small Rm� indicates that,
probably, the largest fractures in the system control the con-
nectivity of the network. This can be rationalized as follows.

When RM and �0� are kept constant and Rm decreases, the
same number of fractures is spread over a wider range of
size, and large fractures are replaced by smaller ones. For
instance, it follows from Eqs. �1�, �2�, and �7� that the density
of the largest fractures decreases as

F�RM� � Rm
a−1. �21�

This is obviously unfavorable for percolation and therefore
�0c� must increase when Rm decreases, as observed in Fig.
3�b�.

If instead �21� , i.e., the mean number of intersections per
fracture, is kept constant and Rm decreases, it implies that the
number of large fractures �with many intersections� in-

creases, in order to compensate for the larger number of
small fractures with less than the average intersections. Spe-
cifically,

F�RM� 
 Rm
1−a, 1 � a � 2, �22a�

F�RM� 
 Rm
−1, 2 � a � 3, �22b�

F�RM� 
 Rm
a−4, 3 � a � 4. �22c�

This favors percolation and therefore �21c� decreases when Rm
decreases, as seen in Fig. 3�a�.

Finally, both �R3� and the density of large fractures scale
as Rm

a−1 for 1�a�4. This means that the density of large
fractures is nearly unaffected when Rm decreases and �3� is
kept constant. In other words, the density �3� is almost insen-
sitive to the value of the lower cutoff Rm, provided that it is
much smaller than RM. Since the threshold �3c� �L�� is also
nearly independent of Rm in Fig. 3�c�, it suggests that for a
�4 percolation relies on the upper part of the fracture size
spectrum.

FIG. 3. Percolation thresholds expressed in terms of the densities �21c� �L�� �a�, �0c� �L�� �b�, and �3c� �L�� �c� for regular hexagons versus Rm� .
The symbols correspond to a=1.5 ���, a=2 �+�, a=2.5 ���, and a=2.9 ���. The line types correspond to nonperiodic networks with L�
=4 �—� and periodic networks with L�=4 �---�, L�=6 �.-.-.-�, and L�=10 �¯�. The threshold �3c� �L�� is plotted versus a in �d�, for
nonperiodic �---� and periodic �—� networks with Rm� =0.1, and for L�=4 ���, L�=6 ���, L�=8 ���, L�=10 �periodic� or 12 �nonperiodic�
���, and extrapolated for infinite systems ��� of hexagons.
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D. Influence of L� „L�š1… for hexagons

Consider now the influence of the sample size L� on the
connectivity of the fracture networks. Figure 3�c� also shows
systematic results for periodic fracture systems with L�=6. A
comparison with the data for L�=4 shows that the finite-size
effects persist for this value of the sample size. Larger do-
main sizes have been considered for a=1.5, 2, and 2.5 as
well as for monodispersed networks, in order to conduct a
finite-size analysis �see Fig. 3�d� and Table I�.

As already stated, the spatially periodic character of the
networks plays only a minor role �see Fig. 3�d��. Further-
more, the influence of this boundary condition decreases
with the sample size, as could be expected.

A small dependence of �3c� �L�� on the exponent a is ob-
served when L��6, but of a small amplitude. For instance, it

increases by 2%, from 2.57 for a=1.5 to 2.63 for a=2.5,
when L�=12.

Figure 4�a� shows the percolation threshold as a function
of the width of the transition zone �L when the system size
L� increases. According to the scaling relations of standard
percolation theory �16� and �18�, �3c� �L�� linearly varies with
�L for large L�,

�3c� �L�� − �3c� �	� 
 �L. �23�

Hence, one can evaluate the asymptotic limit �3c� �	� from the
corresponding linear fit as an extrapolation of �3c� �L�� for
�L→0, without having to determine the critical exponent �.
Note that �L quantifies the sharpness of the transition for
each L�, and therefore, it is by itself a measure of the uncer-
tainty of the determination of �3c� �L��.

TABLE I. Percolation thresholds �3c� �L�� of fracture networks, for various cell sizes L�. Numbers in parentheses are 95% confidence
intervals.

�3c� �L�� for L�=4 L�=6 L�=8 L�=10 L�=12 L�=20 L�→	

Periodic networks of hexagons, Rm=0.1

a=1.5 2.88 �0.04� 2.70 �0.03� 2.61 �0.03� 2.56 �0.03� 2.39 �0.03�
a=2.0 2.88 �0.03� 2.73 �0.02� 2.48 �0.07�
Monodisperse 2.95 �0.05� 2.70 �0.03� 2.52 �0.02� 2.41 �0.01� 2.31 �0.013�

Nonperiodic networks of hexagons, Rm=0.1

a=1.5 2.92 �0.04� 2.74 �0.03� 2.64 �0.02� 2.57 �0.02� 2.39 �0.03�
a=2.0 2.91 �0.05� 2.75 �0.03� 2.67 �0.02� 2.59 �0.02� 2.46 �0.03�
a=2.5 2.95 �0.04� 2.77 �0.03� 2.71 �0.02� 2.63 �0.02� 2.48 �0.03�
a=2.9 2.94 �0.03�
a=3.6 2.91 �0.03�
a=4.0 2.90 �0.03�
a=4.5 2.81 �0.02�
Monodisperse 3.02 �0.06� 2.83 �0.04� 2.63 �0.03� 2.53 �0.02� 2.43 �0.01� 2.31 �0.015�

Nonperiodic networks of triangles, Rm=0.1

a=1.5 2.69 �0.03� 2.58 �0.03� 2.51 �0.02� 2.46 �0.01� 2.35 �0.013�
Monodisperse 2.80 �0.04� 2.60 �0.03� 2.51 �0.01� 2.40 �0.02� 2.34 �0.01� 2.24 �0.01�

Nonperiodic networks of squares, Rm=0.1

a=1.5 2.82 �0.03� 2.69 �0.02� 2.61 �0.02� 2.55 �0.01� 2.42 �0.014�
Monodisperse 2.96 �0.05� 2.72 �0.04� 2.53 �0.03� 2.42 �0.01� 2.31 �0.014�

Nonperiodic networks of hexagons and rectangles with aspect ratio 4, 50%–50%, Rm=0.1

a=1.5 2.47 �0.02�
Monodisperse 2.47 �0.03�

Nonperiodic networks of hexagons and triangles, 50%–50%, Rm=0.1

a=1.5 2.59 �0.02�
Monodisperse 2.62 �0.03�

Nonperiodic monodisperse networks of rectangles with aspect ratio h /w.

h /w=1 2.96 �0.05� 2.72 �0.04� 2.53 �0.03� 2.42 �0.01� 2.31 �0.014�
h /w=2 2.85 �0.04� 2.61 �0.03� 2.41 �0.02� 2.32 �0.01� 2.20 �0.01�
h /w=4 2.45 �0.03� 2.24 �0.03� 2.13 �0.01� 2.06 �0.01� 1.99 �0.01�
h /w=8 2.01 �0.02� 1.89 �0.02� 1.83 �0.01� 1.79 �0.01� 1.74 �0.01�
h /w=16 1.65 �0.01� 1.60 �0.01� 1.57 �0.01� 1.55 �0.01� 1.53 �0.01�
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The extrapolated values for monodisperse networks and
for polydisperse ones with a=1.5, 2, or 2.5 with Rm� =0.1 are
given in Table I; for L�=	, �3c� for polydisperse systems is
slightly larger than for monodisperse ones, while the oppo-
site is true for finite L�. This results from different prefactors
of �L in Eq. �23�. However, the variations of the extrapolated
�3c� �	� are of a small amplitude, as already observed in Fig.
3�d� for 1.5a4 in finite domains.

The data in Fig. 4�a� are for a particular value Rm� =0.1
�except in the case of monodisperse networks�. However, �3c�
was found nearly independent of Rm� in finite domains with
L�=4 and 6, and we may safely assume that this can be
extended to larger and infinite domains, since the finite size
effects are induced primarily by the largest fractures. Sum-
marizing these results, the percolation threshold �3c� �	� for
monodisperse or polydisperse networks of hexagons can be

expressed in a first approximation for any Rm1 and 1a
4 as

�3c� �Rm� ,a,	� = �3c� �	� � 2.4 ± 0.1. �24�

E. Influence of the shape

Two kinds of shapes will be studied. The first one consists
of regular polygons such as triangles, squares, and hexagons.
The second one consists of rectangles with large aspect ra-
tios.

Figure 5 displays �3c� for networks with various fracture
shapes. Two types of networks have been tested, namely net-
works with fractures of the same shape �hexagons, squares,
or triangles� and mixtures containing hexagons and triangles
�50%–50%� or hexagons and rectangles with aspect ratio 4
�50%–50%�.

Note first that these data correspond to a range of cutoff
radius 0.1Rm� 1. The small sensitivity of �3c� to Rm� ob-
served for hexagons in Fig. 3�c� is confirmed here for a va-
riety of other fracture shapes.

The numerical data for all fracture shapes lie close one to
another, although small but systematic deviations can be ob-
served; the data for squares are below those for hexagons,
and the data for triangles are below those for squares. The
percolation threshold for mixtures of hexagons and other
polygons is also smaller than for systems composed of hexa-
gons only.

Nevertheless, for L��1, the dimensionless fracture den-
sity based on the shape factor vex successfully accounts for
most of the influence of the fracture shape, especially for
regular polygons. For instance, �3c� for networks of hexagons,
squares or triangles is within 2.66±0.08 when L�=6, a
=1.5, and Rm=0.1. In contrast, the data in Fig. 5 for �c�R3�,
which does not incorporate the shape factor, are very scat-
tered.

FIG. 4. The percolation threshold �3c� �L�� as a function of the
width �L of the transition zone. Data in �a� are for periodic �open
symbols� or nonperiodic �black symbols� networks of hexagons,
monodisperse ��� or polydisperse with Rm� =0.1 and a=1.5 ���, 2
��� or 2.5 ���. Additional data are given in �b�, for nonperiodic
monodisperse �open symbols� or polydisperse with a=1.5 and Rm�
=0.1 �black symbols� networks of triangles ���, squares ��� and
rectangles ��� with various aspect ratios 2, 4, 8, and 16. The dots
are the data for hexagons also shown in �a�. The lines in �a�,�b� are
the least square fits �23� and the symbols on the vertical axis are the
extrapolated �3c� �	�.
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When polygons become elongated, the dependence of the
percolation threshold on the aspect ratio becomes more im-
portant. This is clearly seen in Fig. 4�b� where data for
monodisperse and polydisperse networks with a=1.5 in do-
mains with increasing sizes L�, with various fracture shapes,
have been added to the results for hexagons of Fig. 4�a�. The
result for squares lies within the range of Eq. �24�, but tri-
angles yield a slightly lower value of �3c� �	�. For rectangles,
the threshold decreases significantly when the ratio of the
length h to the width w increases.

This can be taken into account by using the shape factor
�=4R / P of the fractures. This ratio is minimum for disks,
with �=2/��0.637, and it increases when the shape devi-
ates from circularity. For rectangles it is equal to
	h2+w2 / �h+w�, and it ranges from 1/	2 for squares to one
for very long and narrow rectangles. It turns out that a qua-
dratic correction in terms of the deviation of � from 2/� is
very successful for the representation of the data for very
different and irregular fracture shapes.

All the thresholds obtained in domains with L�=6 and
monodisperse or polydisperse size distributions with a=1.5,
2, or 2.5 and Rm=0.1 are plotted in Fig. 6 as functions of �.
This includes networks of hexagons, squares, triangles, mix-
tures of hexagons with rectangles or triangles, and rectangles
with h /w up to 16. The data are well fitted by the expression

�3c� �L�� = 2.691 − 4
� −
2

�
�2� �L� = 6� . �25�

The deviations from this fit never exceed ±0.1. When frac-
tures with different shapes coexist in the network, the mean
value of the whole corrective term in square brackets in Eq.

�25� is used, or equivalently, Eq. �25� applies with � replaced
by �̄=2/�+ ���−2/��2�1/2.

Finite size analyses have also been conducted for mono-
disperse and polydisperse networks of square and triangular
fractures, and for monodisperse networks of rectangles with
aspect ratios h /w=2, 4, 8, and 16. The results are given in
Fig. 4�b� and Table I. For squares, the extrapolated value
�3c� �	� is very close to that for hexagons, and within the
range of Eq. �24�. The result for triangles is only slightly
smaller and below the lower limit of Eq. �24�. Rectangular
shapes yield much smaller values. However, the same kind
of correction as in Eq. �25� can be made. A very good fit of
all the data is provided by the following model, which ex-
tends Eq. �24� for all the shapes considered in this work

�3c� �	� = 2.411 − 4
� −
2

�
�2� . �26�

This model is plotted in Fig. 6 in comparison with numerical
data. Again, the deviations never exceed ±0.1.

It can be noted that Eq. �26� predicts a threshold value
1.14 when h /w tends to infinity �i.e., when �→1�, which is
in the range of the predictions 1.5 of Ref. �28� for prolate
ellipsoids, 1 of Ref. �29� for capped cylinders, and 1.3 of
Ref. �30� for elongated prisms, in the limit of infinite slen-
derness.

IV. SMALL DOMAINS

The situations addressed in this section are out of the
usual scope of percolation theory. For instance, as it was
already mentioned in Sec. II B, they do not give rise to a
critical phase transition. Recall also that the expression “per-
colation threshold” is used here in a loose sense, to refer to
the density when percolation probability reaches 1/2. How-
ever, finite and even small domains are often encountered in
practical applications, and it was thought worth giving them
some consideration. For instance, one might be interested in
the probability of existence of a percolating fracture network
on a local scale �e.g., between a man-made structure and an
aquifer�, when large scale fractures are known to exist. Of
course, some of the necessary data, such as �, RM, and a
cannot be obtained from observations on the local scale, but
they might be available from other sources, such as a re-
gional geological survey.

A. Single-fracture percolation

The main difference regarding the occurrence of percola-
tion between the situations with L��2 and L��2 is the pos-
sibility in the latter case for a single fracture, possibly with
its center outside the domain, to connect two opposite faces
of �. This event results from a Poisson process, and there-
fore, the percolation probability function ��L� ,��� for small
domains is not properly fitted any more by the error function
�17� �see Fig. 2�b��.

Let us first note that the probability that a fracture with
size in �R ,R+dR�, area A and perimeter P intersects �not
necessarily spans� � is

FIG. 6. The percolation thresholds �3c� as functions of the shape
factor �. Open symbols correspond to all the data for L�=6 in Figs.
4 and 5, for monodisperse ��� or polydisperse networks with a
=1.5 ���, a=2 ���, and a=2.5 ���. This includes hexagons,
squares, triangles, mixtures of hexagons with rectangles or tri-
angles, and rectangles with h /w up to 16. Black symbols corre-
spond to the extrapolated values �3c� �	� in Fig. 4, with the same
convention. The broken and solid lines are the models �25� and
�26�, respectively. The marks on the right vertical axis are the pre-
dictions of Refs. �28–30� for various kinds of elongated objects
with infinite aspect ratios.
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dpI�R� = F�R�� 3
2AL + 3

4 PL2 + L3�dR . �27�

This is again a consequence of the kinematic formula �26�.
Regardless of the fracture shape, this expression is domi-
nated when R /L is large by its first term,

dpI�R� � 3
2LAF�R�dR �L � R� . �28�

However, the probability that a fracture not only intersects
the domain but also spans two of its opposite faces is
smaller. In the limit of large fractures, it is given by �see the
Appendix�

dp�R� �
1
	3

LAF�R�dR �L � R� . �29�

This result was obtained by using the same approximation as
when going from Eq. �27� to Eq. �28�, i.e., by neglecting the
intersections of � with the fracture near its border line com-
pared to the intersections in the interior of its surface, and

therefore, it also applies regardless of the fracture shape, in
the limit L�R.

Since the fractures are supposed to be randomly located
according to a Poisson process, the intersections of � by
different fractures are independent events, and the overall
probability 1−�1 that percolation does not occur due to a
single spanning fracture can be tentatively estimated as

1 − �1 = exp
−� p�R�dR� � exp
−
1
	3

LAp��R2�+� ,

�30�

where Ap is the shape factor A /R2 of the polygon and

�R2�+ = �
L/2

RM

R2n�R�dR = �
RM

3−a − �L/2�3−a

3 − a
. �31�

FIG. 7. The nonpercolation probability as a function of the frac-
ture network density �0� for L�=0.1, Rm� =0.003125 and a=1.5 �a�,
2.5 �b�, and 3.5 �c�. Data are for � �1−�, nonpercolation probabil-
ity of the whole network�, � �1−�1, probability of no single span-
ning fracture�. The lines correspond to the exponential fit of the data
for �1 �—� and to the prediction �30� �---�.

FIG. 8. The percolation thresholds �c� as functions of Rm� . Dots
and solid lines �-•-� correspond to hexagons with a=1.5 �a� and 2.5
�b�, in domains with sizes L�=0.1 to 2 indicated in the figure. Ad-
ditional data are provided in �a� for squares ��� and triangles ���
with L�=0.1 and a=1.5, and in �b� for hexagons with a=2 �¯�, 2.9
�---�, and 3.5 �-.-.-�. The horizontal dashed lines correspond to the
prediction �32�.
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The percolation probability �1 for the existence of at least
one spanning fracture is the complementary function to �30�,
and it can be written exactly in the form of �19� with

�� = �ApL�R2�+ �c� = 	3 ln 2 � 1.20. �32�

Equations �30� or �19� and �32� quantify the probability of
percolation in small domains when most fractures are larger
than L, in terms of a single shape-independent quantity
�Ap�R2�+. This is simply the volumetric area of fractures
with R�L /2, which can be obtained from one-dimensional
�line surveys� or two-dimensional �trace maps� field data
�31,32�.

Note however that Eq. �28� has been applied here some-
what beyond its range of validity, since the integration range
in Eq. �31� violates the criterion L�R. The magnitude of the
relative error is of the order of L�3−a. Therefore, the predic-
tion �32� is not expected to apply accurately when a is of the
order of 3 or larger. Figure 7 shows �30� for three values of
a; as expected, the prediction fits well the data for a=1.5; it
is still good for networks with a=2.5. When a=3.5 the dif-
ference between �30� and the numerical data is substantial,
although the dependence of �1 on the fracture density re-
mains of the exponential form of �30� or �19�.

B. Unified formulation

It is helpful to introduce a single percolation parameter,
applicable over the whole range of the domain sizes. The
following sum is a natural candidate:

�� = �
vex�
Rm

L/2

R3n�R�dR + ApL�
L/2

RM

R2n�R�dR�
= �vex
�R3�− +

�L

2
�R2�+� . �33�

It reduces to �3� when no fracture larger than L exists �L�
�2�, and to �� in �32� when the contribution of the small
fractures can be neglected.

A set of results is presented in these terms in Fig. 8, for
domains with L�=0.1 to 2. The value of �c� is plotted as a
function of the lower cutoff radius Rm� . In all cases with a
�3, �c� is found independent of Rm� . Additional data for
square and triangular fractures in Fig. 8�a� confirm that �c�
does not depend either on the fracture shape when L��1. As
the domain size decreases, �c� converges as expected to the
limit 	3 ln 2 �see Eq. �32��, although this convergence gets
slower when the exponent a increases �see also Fig. 10�. For
a�3, �c� depends on Rm� and it is not clear whether it would
reach the limit 	3 ln 2 in very small domains.

These observations can be rationalized by considering the
ratio of the two contributions to �� in Eq. �33�, which be-
haves when Rm� �L��1, as

�L�R2�+

2�R3�− �
��4 − a

�3 − a� �

L

2RM
�a−3

, 1 � a � 3,

1, 3 � a � 4,


 L

2Rm
�4−a

, 4 � a . �
�34�

For 1�a�3 the second term �L�R2�+ /2 in �� dominates,
which reflects the observation that spanning by a single frac-
ture is the most probable percolation mechanism in this
range �see Figs. 7�a� and 7�b��. Since in addition �1 is con-
trolled by the largest fractures, �c� is insensitive to Rm� and to
the polygon shape.

In the intermediate range 3a4, the two contributions
to �� are of the same order of magnitude. Percolation by a
cluster of small fractures or by a single large fracture �and
most probably one with a size of the order of L� are both
possible; it is hard to draw hard conclusions in this transition
range. Recall also that the evaluation �30� of �1 is inaccurate
in this range of exponent, as already mentioned.

Finally, for a�4, the first term dominates and �� reduces
to �3�. With such a large exponent a, the large fractures are so
uncommon that the probability of a spanning one is negligi-
bly small, compared to the probability of the numerous frac-
tures smaller than L to form a percolating cluster. Hence, the
system reverts to the case of large domains.

This is illustrated in a different way in Fig. 9, where �c� is
plotted for a constant domain size L�=0.1 as a function of
the exponent a. Three regimes can be distinguished, which
correspond to the three cases in �34�. For a�2.5, the values
of the threshold are close to the prediction �32�. Between
a�2.5 and a=4, it increases rapidly and reaches a maximum
at a=4. After a=4, it starts decreasing slightly. The presence
of some fractures with R�L induces finite-size effects and
threshold densities larger than �24�, but their probability of
appearance decreases when a increases and �c� progressively

FIG. 9. The percolation thresholds �c� for regular hexagons as
functions of a in nonperiodic networks with L�=0.1, Rm�
=0.006 25 ���, Rm� =0.003 125 ���, and Rm� =0.0025 ���. The ver-
tical lines correspond to 5% variations of the percolation probabil-
ity. The dashed horizontal line is the prediction of Eq. �32�.
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decreases as well. Ultimately, �� reduces to �3�, and �c� should
converge to �3c� �	��2.4 in Eq. �24�. A transition takes place
in the intermediate regime; it starts here at a�2.5 instead of
3 as predicted by Eq. �34�, because the convergence of �c� to
�32� is slow when a approaches 3. It is also confirmed in Fig.

9 that Rm� has no influence on �c� out of the interval 3a
4.

Finally, all these observations can be summarized in the
following empirical relationships whatever the fracture
shapes:

�c� ��
	3 ln 2 � 1.206, 1  a  2.5,

	3 ln 2 +
a − 2.5

1.5
�3 − 	3 ln 2� , 2.5  a  4, L�  0.1,

3, 4  a  4.5.
� �35�

For much smaller domains, the limit between the first case
with a constant threshold value and the second case which is
modeled by a linear increase would probably shift gradually
from 2.5 to 3, and the slope in the transition region would
steepen accordingly.

Any systematic numerical modeling of percolation in sys-
tems with a�4 is very expensive in terms of computer time
and was not done beyond what has been presented here;
instead, a simple approximation of �3c� �L�� by 3 is proposed
which should be an acceptable estimation of the percolation
threshold in this range of a and L�.

V. SCALING OF THE PERCOLATION PROPERTIES

Data obtained for large domains in Sec. III and in small
domains in Sec. IV are plotted together in Fig. 10 in terms of
�c� as a function of L�. Recall that for L��2, �� reduces
exactly to �3�. Note also that the exponent a remains in the
range 1�a�3, so that these results are fairly independent of
the fracture shape.

The two regimes corresponding to the opposite limits L�
�1 and L��1 are clearly visible. When L��1, the percola-
tion threshold decreases with L�; it converges to the limit
�3c� �	� in Eq. �24�, according to the scaling law �16�. For
small L�, �c� increases with L�; it tends towards 	3 ln 2
�1.201 when L�→0, as predicted by Eq. �32�.

Now, consider the scaling of the percolation properties of
fracture networks with a large contrast L�Rm for the two
situations L��1 and L��1.

Case L�RM: In this regime, the percolation behavior of
the fracture network is described by the scaling relations �16�
and �18�. In a network with �3���3c� �	�, the percolation
probability ��L�� in a finite domain is always smaller than
1/2 since �3c� �L����3c� �	���3�. Conversely, if �3���3c� �	�,
there exists a scale Lc� at which �3� starts exceeding �3c� �L��
given by �16�, and ��L�� is larger than 1/2 for any domain
with a size L��Lc�.

Case L�RM: Considering that the threshold �c� for small
systems remains in practice in the relatively narrow range
from 1 to 3 �see Fig. 10 and Eq. �35��, the scaling behavior
of the network is easily derived from Eqs. �33� and �34�. The
leading term of �� can be expressed as

�� � �vex�LRM
3−aRm

a−1, 1 � a � 3,

L4−aRm
a−1, 3 � a � 4,

Rm
3 , 4 � a .

� �36�

Given the density �, the percolation parameter �� increases
linearly with the system size L for a�3, and as L4−a for 3
�a�4. Therefore, provided that RM is large enough, a criti-
cal size exists whatever � above which �� reaches the thresh-
old value in Eq. �35�.

For a�4, the percolation behavior of finite parts of the
fracture network reverts to that of large domains, governed
by the standard scaling relations �16�–�18�, and the same
considerations as for L�RM can be used here as well.

VI. CONCLUSIONS

Systematic numerical simulations of percolation in large
domains with L�RM show that the normalization of the
critical fracture density for polydisperse networks based on
the third moment of the fracture size distribution provides a
good percolation parameter. The percolation threshold �3c�
varies only slightly with Rm� which is the lower cutoff of the
size distribution; little influence of the exponent a has been
observed for a�4, which, perhaps, can be attributed to finite
size effects. The shape of polygonal fractures which do not
depart too strongly from circularity is taken into account
through the shape factor vex, a generalization of the result of
Koudina et al. �27� for monodisperse networks. Furthermore,
a corrective term based on a second shape factor is very
successful in unifying the data for a much broader range of
shapes, including very elongated polygons.

When the maximal fracture radius RM exceeds the domain
size L, the percolation probability depends on the truncated
third moment �R3�− for a�4, and on the truncated second
moment �R2�+ when a�3. A simple combination of these
two moments is proposed to form a dimensionless fracture
density �� which can be used to describe the percolation
properties over the whole range of L and a.

Outside of a transition region with L��1 and 3a4,
where the competition of several mechanisms with compa-
rable importance prevents any firm conclusion, �� incorpo-
rates the influences of the fracture shape, of the domain size
and of the fracture size distribution parameters Rm, RM, and
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a. It should be noted that since the parameters of the size
distribution are embodied in the moments �R3�− and �R2�+,
the results obtained in this work for a power law can be
expected to apply for other size distribution functions.

This work can be extended in many ways in order to
make it still more realistic. For instance, the properties of
anisotropic networks could be addressed since it is known
that in most cases fracture networks can be partitioned into
families of fractures whose orientations are almost constant
or distributed with narrow dispersion around these orienta-
tions. However, we should mention here an observation
made by Sisavath et al. �31�; results obtained for isotropic
networks were seen to be very successful when applied to a
real anisotropic network.
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APPENDIX: ASYMPTOTICS FOR SMALL DOMAINS

Consider the intersection of the domain � centered at the
origin of the coordinate system with an infinite plane P de-
scribed by the equation

x sin � cos � + y sin � sin � + z cos � = b ,
�A1�

0  �  �, 0  �  � .

The intersections of the plane P with the upper and lower
planes z= ±L /2 of � are

x sin � cos � + y sin � sin � = b −
L

2
cos �, z = L/2, �A2�

x sin � cos � + y sin � sin � = b +
L

2
cos �, z = − L/2.

�A3�

When x varies between −L /2 and L /2, the ordinate y of
the points which belong to �A2� or �A3�, varies between the
limits

1

sin � sin �

b −

L

2
�cos � + sin ��cos ����

 y 
1

sin � sin �

b −

L

2
�cos � − sin ��cos ����,

z = L/2, �A4�

1

sin � sin �

b +

L

2
�cos � − sin ��cos ����

 y 
1

sin � sin �

b +

L

2
�cos � + sin ��cos ����,

z = − L/2. �A5�

The intersection line �A2� passes through the upper
boundary of � when the interval �A4� intersects the interval
−L /2yL /2. This means that b should satisfy two in-
equalities

1

sin � sin �

b −

L

2
�cos � + sin ��cos ���� 

L

2
�A6�

and

1

sin � sin �

b −

L

2
�cos � − sin ��cos ���� � −

L

2
. �A7�

Similarly, the intersection line �A3� passes through the
lower boundary of the domain when

1

sin � sin �

b +

L

2
�cos � − sin ��cos ���� 

L

2
�A8�

and

1

sin � sin �

b +

L

2
�cos � + sin ��cos ���� � −

L

2
. �A9�

The plane P intersects both upper and lower boundaries of
� if b satisfies

1

sin � sin �

b +

L

2
��cos �� − sin ��cos ���� 

L

2
�A10�

and

1

sin � sin �

b −

L

2
��cos �� − sin ��cos ���� � −

L

2
�A11�

or equivalently

�b� 
L���,��

2
, � = sin ��sin � + �cos ��� − �cos �� .

�A12�

FIG. 10. The percolation thresholds for nonperiodic networks of
regular hexagons as functions of L�, with Rm� =1/320 �L�2� or
1/10 �L��4�, for a=1.5 ���, 2 ���, 2.5 ���, and 2.9 ���. The dots
��� are for a=1.5 when Rm� =L� /32. The dotted line corresponds to
the fit �16� of the data for a=2, which yields �3c� �	�=2.46 and �
=0.93.
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Consider discs of radius R�L which lie in the plane P.
All discs whose centers are close to � intersect its opposite
boundaries if the plane P does it; these centers cover an area
whose surface Sp can be evaluated approximately as �R2.

When the plane P is displaced in the normal direction, it
ensures the connection between the boundaries whenever
�A12� is satisfied; thus, the total possible distance of the
displacement is L�. It follows that all discs whose centers
belong to the volume L��R2, intersect the two opposite do-
main boundaries.

Let N fractures with radius R and orientation �� ,�� be
generated in the large volume V covering � �V�LR2�. The
probability p�R ,� ,�� that a fracture intersects the domain
boundaries is L��R2 /V. The positions of fractures in the
space are independent, and the probability that neither frac-
ture from the generated set intersects them is given by the
Poisson distribution e−Np. The number of fractures that have
the radius R is VF�R��R �cf. Eq. �7��, and N can be written
as

N = VF�R��R
sin �

2�
���� . �A13�

The total probability that no fracture intersects the bound-
aries whatever �R ,� ,�� is the product of the corresponding
probabilities,

�
R,�,�

exp
− L��R2F�R��R
sin �

2�
�����

= exp
− �
R,�,�

L��R2F�R��R
sin �

2�
�����

� exp
− L���
r

RM

R2F�R�dR� , �A14�

where r�RM. � is the mean value of non-negative � over all
possible orientations �� ,��,

� =
1

2�
�

0

�

sin �d��
0

�

����,��d� =
1
	3

� 0.5774,

�A15�

�� = ��, � � 0,

0, � � 0.
�

For polygonal fractures, the factor � in �A14� should be
replaced by the dimensionless polygon area Ap=A /R2, i.e.,
the area of an equivalent polygon inscribed in a unit disc

exp
− LAp��
r

RM

R2F�R�dR� . �A16�
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